tropical_cyclone_eye_brightness_temperature

accepted
Created: Feb. 5, 2024
Proposer: Jonathan Gregory & Lars Barring
Proposed Date: 2024-01-10
#270
Change Date: Feb. 5, 2024, 3:56 p.m.
Term: tropical_cyclone_eye_brightness_temperature
Unit: K
Unit ref: UPKA
AMIP:
GRIB:
The quantity with standard name tropical_cyclone_eye_brightness_temperature is the warmest brightness temperature value in the eye region of a tropical cyclone (0 - 24 km from the storm center) derived using the Advanced Dvorak Technique, based on satellite observations. Reference: Olander, T. L., & Velden, C. S., The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery (2007). American Meteorological Society Weather and Forecasting, 22, 287-298. The brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area.
Change Date: Feb. 5, 2024, 3:59 p.m.
Term: tropical_cyclone_eye_brightness_temperature
Unit: K
Unit ref: UPKA
AMIP:
GRIB:
The quantity with standard name tropical_cyclone_eye_brightness_temperature is the warmest brightness temperature value in the eye region of a tropical cyclone (0 - 24 km from the storm center) derived using the Advanced Dvorak Technique, based on satellite observations. Reference: Olander, T. L., & Velden, C. S., The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery (2007). American Meteorological Society Weather and Forecasting, 22, 287-298. The brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area. It is strongly recommended to include a units_metadata attribute.
Change Date: Feb. 9, 2024, 3:27 p.m.
Term: tropical_cyclone_eye_brightness_temperature
Unit: K
Unit ref: UPKA
AMIP:
GRIB:
The quantity with standard name tropical_cyclone_eye_brightness_temperature is the warmest brightness temperature value in the eye region of a tropical cyclone (0 - 24 km from the storm center) derived using the Advanced Dvorak Technique, based on satellite observations. Reference: Olander, T. L., & Velden, C. S., The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery (2007). American Meteorological Society Weather and Forecasting, 22, 287-298. The brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area. In order to convert the units correctly, it is essential to know whether a temperature is on-scale or a difference. Therefore this standard strongly recommends that any variable whose units involve a temperature unit should also have a units_metadata attribute to make the distinction. It is strongly recommended to include the attribute units_metadata.
Change Date: Feb. 23, 2024, 4:02 p.m.
Term: tropical_cyclone_eye_brightness_temperature
Unit: K
Unit ref: UPKA
AMIP:
GRIB:
The quantity with standard name tropical_cyclone_eye_brightness_temperature is the warmest brightness temperature value in the eye region of a tropical cyclone (0 - 24 km from the storm center) derived using the Advanced Dvorak Technique, based on satellite observations. Reference: Olander, T. L., & Velden, C. S., The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery (2007). American Meteorological Society Weather and Forecasting, 22, 287-298. The brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area. It is strongly recommended that a variable with this standard name should have a units_metadata attribute, with one of the values "on-scale" or "difference", whichever is appropriate for the data, because it is essential to know whether the temperature is on-scale (meaning relative to the origin of the scale indicated by the units) or refers to temperature differences (implying that the origin of the temperature scale is irrevelant), in order to convert the units correctly (cf. https://cfconventions.org/cf-conventions/cf-conventions.html#temperature-units).