air_equivalent_potential_temperature
complete
Created: 5 Feb 2024
Proposer: Beate Geyer/Ronny Petrik
Proposed Date: 2019-08-20
Change Date: 5 Feb 2024, 2:31 p.m.
Term: air_equivalent_potential_temperature
Unit: K
Unit ref: UPKA
AMIP:
GRIB:
The "equivalent potential temperature" is a thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Equivalent_potential_temperature. It is the temperature of a parcel of air if all the moisture contained in it were first condensed, releasing latent heat, before moving the parcel dry adiabatically to a standard pressure, typically representative of mean sea level pressure. To specify the standard pressure to which the quantity applies, provide a scalar coordinate variable with standard name reference_pressure.
Change Date: 5 Feb 2024, 2:51 p.m.
Term: air_equivalent_potential_temperature
Unit: K
Unit ref: UPKA
AMIP:
GRIB:
The "equivalent potential temperature" is a thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Equivalent_potential_temperature. It is the temperature of a parcel of air if all the moisture contained in it were first condensed, releasing latent heat, before moving the parcel dry adiabatically to a standard pressure, typically representative of mean sea level pressure. To specify the standard pressure to which the quantity applies, provide a scalar coordinate variable with standard name reference_pressure. It is strongly recommended to include a units_metadata attribute.
Change Date: 9 Feb 2024, 2:41 p.m.
Term: air_equivalent_potential_temperature
Unit: K
Unit ref: UPKA
AMIP:
GRIB:
The "equivalent potential temperature" is a thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Equivalent_potential_temperature. It is the temperature of a parcel of air if all the moisture contained in it were first condensed, releasing latent heat, before moving the parcel dry adiabatically to a standard pressure, typically representative of mean sea level pressure. To specify the standard pressure to which the quantity applies, provide a scalar coordinate variable with standard name reference_pressure. In order to convert the units correctly, it is essential to know whether a temperature is on-scale or a difference. Therefore this standard strongly recommends that any variable whose units involve a temperature unit should also have a units_metadata attribute to make the distinction. It is strongly recommended to include the attribute units_metadata.
Change Date: 23 Feb 2024, 3:53 p.m.
Term: air_equivalent_potential_temperature
Unit: K
Unit ref: UPKA
AMIP:
GRIB:
The "equivalent potential temperature" is a thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Equivalent_potential_temperature. It is the temperature of a parcel of air if all the moisture contained in it were first condensed, releasing latent heat, before moving the parcel dry adiabatically to a standard pressure, typically representative of mean sea level pressure. To specify the standard pressure to which the quantity applies, provide a scalar coordinate variable with standard name reference_pressure. It is strongly recommended that a variable with this standard name should have a units_metadata attribute, with one of the values "on-scale" or "difference", whichever is appropriate for the data, because it is essential to know whether the temperature is on-scale (meaning relative to the origin of the scale indicated by the units) or refers to temperature differences (implying that the origin of the temperature scale is irrevelant), in order to convert the units correctly (cf. https://cfconventions.org/cf-conventions/cf-conventions.html#temperature-units).