BRKICBPL northward_upward_derivative_of_geopotential A quantity with standard name Xward_Yward_derivative_of_geopotential is a second spatial derivative of geopotential, P, in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Upward" indicates a vector component which is positive when directed upward (negative downward). "component_derivative_of_X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. I BP71JK6Y tendency_of_change_in_land_ice_amount "Amount" means mass per unit area. Zero change in land ice amount is an arbitrary level. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. "tendency_of_X" means derivative of X with respect to time. I CFSN0381 sea_surface_temperature Sea surface temperature is usually abbreviated as "SST". It is the temperature of sea water near the surface (including the part under sea-ice, if any). More specific terms, namely sea_surface_skin_temperature, sea_surface_subskin_temperature, and surface_termperature are available for the skin, subskin, and interface temperature. respectively. For the temperature of sea water at a particular depth or layer, a data variable of sea_water_temperature with a vertical coordinate axis should be used.’ M CFV16A45 surface_downward_heat_flux_in_snow "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. M TQEV2Y7Y northward_northward_derivative_of_geopotential A quantity with standard name Xward_Yward_derivative_of_geopotential is a second spatial derivative of geopotential, P, in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Northward" indicates a vector component which is positive when directed northward (negative southward). "component_derivative_of_X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. I CFV16A14 heat_flux_into_sea_water_due_to_freezing_of_frazil_ice In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Frazil" consists of needle like crystals of ice, typically between three and four millimeters in diameter, which form as sea water begins to freeze. Salt is expelled during the freezing process and frazil ice consists of nearly pure fresh water. M JPJT0K3C westward_westward_derivative_of_geopotential A quantity with standard name Xward_Yward_derivative_of_geopotential is a second spatial derivative of geopotential, P, in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Westward" indicates a vector component which is positive when directed westward (negative eastward). "component_derivative_of_X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. I FIORN9EU distance_from_geocenter A measure of distance from the Earth's geocenter, commonly used in satellite tracks. I X1J62HH1 westward_upward_derivative_of_geopotential A quantity with standard name Xward_Yward_derivative_of_geopotential is a second spatial derivative of geopotential, P, in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Westward" indicates a vector component which is positive when directed westward (negative eastward). "Upward" indicates a vector component which is positive when directed upward (negative downward). "component_derivative_of_X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. I KPKGW77Y northward_westward_derivative_of_geopotential A quantity with standard name Xward_Yward_derivative_of_geopotential is a second spatial derivative of geopotential in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Westward" indicates a vector component which is positive when directed westward (negative eastward). "Northward" indicates a vector component which is positive when directed northward (negative southward). "component_derivative_of_X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. I CQHVO6JQ upward_upward_derivative_of_geopotential A quantity with standard name Xward_Yward_derivative_of_geopotential is a second spatial derivative of geopotential in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Upward" indicates a vector component which is positive when directed upward (negative downward). "component_derivative_of_X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. I 3H8T3GRY ocean_relative_vorticity Relative vorticity is the upward component of the relative vorticity vector i.e. the component which arises from horizontal velocity. I