volume_attenuated_backwards_scattering_coefficient_of_radiative_flux_in_air_assuming_no_aerosol_or_cloud

Attenuation is the sum of absorption and scattering. Attenuation is sometimes called "extinction". The attenuated backwards scattering coefficient includes the effects of two-way attenuation by the medium between a radar source and receiver. The volume scattering coefficient is the fraction of incident radiative flux scattered into unit solid angle per unit path length. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_angle exceeding pi/2 radians. A scattering_angle should not be specified with this quantity. The scattering coefficient is assumed to be an integral over all wavelengths unless a coordinate of "radiation_wavelength" or "radiation_frequency" is included to specify the wavelength. Coefficients with canonical units of m2 s-1, i.e. multiplied by density, have standard names with "specific_" instead of "volume_". Radiative flux is the sum of shortwave and longwave radiative fluxes. A phrase "assuming_condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself.
  • List containing this term version: CF (84) CF (85) CF (86)
  • Proposls with this term version:
  • Proposal: Jonathan Gregory [Renaming of volume_attenuated_backwards_]

  • There are no aliases for this term
    This term is alaised by

    volume_attenuated_backwards_scattering_coefficient_of_radiative_flux_in_air_assuming_no_aerosol_or_cloud

    Attenuation is the sum of absorption and scattering. Attenuation is sometimes called "extinction". The attenuated backwards scattering function includes the effects of two-way attenuation by the medium between a radar source and receiver. The volume scattering function is the fraction of incident radiative flux scattered into unit solid angle per unit path length. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_angle exceeding pi/2 radians. A scattering_angle should not be specified with this quantity. Radiative flux is the sum of shortwave and longwave radiative fluxes. A phrase "assuming_condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself.
  • List containing this term version:
  • Proposls with this term version:
  • Proposal: Jonathan Gregory [Renaming of volume_attenuated_backwards_]
  • volume_attenuated_backwards_scattering_coefficient_of_radiative_flux_in_air_assuming_no_aerosol_or_cloud

    Attenuation is the sum of absorption and scattering. Attenuation is sometimes called "extinction". The attenuated backwards scattering coefficient includes the effects of two-way attenuation by the medium between a radar source and receiver. The volume scattering coefficient is the fraction of incident radiative flux scattered into unit solid angle per unit path length. The volume scattering coefficient is the fractional change of radiative flux per unit path length due to the stated process. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_angle exceeding pi/2 radians. A scattering_angle should not be specified with this quantity. The scattering coefficient is assumed to be an integral over all wavelengths unless a coordinate of "radiation_wavelength" or "radiation_frequency" is included to specify the wavelength. Coefficients with canonical units of m2 s-1, i.e. multiplied by density, have standard names with "specific_" instead of "volume_".Radiative flux is the sum of shortwave and longwave radiative fluxes. A phrase "assuming_condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself.
  • List containing this term version:
  • Proposls with this term version:
  • Proposal: Jonathan Gregory [Renaming of volume_attenuated_backwards_]
  • volume_attenuated_backwards_scattering_coefficient_of_radiative_flux_in_air_assuming_no_aerosol_or_cloud

    Attenuation is the sum of absorption and scattering. Attenuation is sometimes called "extinction". The attenuated backwards scattering coefficient includes the effects of two-way attenuation by the medium between a radar source and receiver. The volume scattering coefficient is the fraction of incident radiative flux scattered into unit solid angle per unit path length. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_angle exceeding pi/2 radians. A scattering_angle should not be specified with this quantity. The scattering coefficient is assumed to be an integral over all wavelengths unless a coordinate of "radiation_wavelength" or "radiation_frequency" is included to specify the wavelength. Coefficients with canonical units of m2 s-1, i.e. multiplied by density, have standard names with "specific_" instead of "volume_".Radiative flux is the sum of shortwave and longwave radiative fluxes. A phrase "assuming_condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself.
  • List containing this term version:
  • Proposls with this term version:
  • Proposal: Jonathan Gregory [Renaming of volume_attenuated_backwards_]
  • volume_attenuated_backwards_scattering_coefficient_of_radiative_flux_in_air_assuming_no_aerosol_or_cloud

    Attenuation is the sum of absorption and scattering. Attenuation is sometimes called "extinction". The attenuated backwards scattering coefficient includes the effects of two-way attenuation by the medium between a radar source and receiver. The volume scattering coefficient is the fraction of incident radiative flux scattered into unit solid angle per unit path length. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_angle exceeding pi/2 radians. A scattering_angle should not be specified with this quantity. The scattering coefficient is assumed to be an integral over all wavelengths unless a coordinate of "radiation_wavelength" or "radiation_frequency" is included to specify the wavelength. Coefficients with canonical units of m2 s-1, i.e. multiplied by density, have standard names with "specific_" instead of "volume_". Radiative flux is the sum of shortwave and longwave radiative fluxes. A phrase "assuming_condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself.
  • List containing this term version: CF (84) CF (85) CF (86)
  • Proposls with this term version:
  • Proposal: Jonathan Gregory [Renaming of volume_attenuated_backwards_]